

Available online at www.sciencedirect.com

Journal of the European Ceramic Society 26 (2006) 1973-1976

www.elsevier.com/locate/jeurceramsoc

Hydrothermal synthesis of Ba₅Nb₄O₁₅ ultrafine powders

S.Y. Wu, X.M. Chen*, H.Y. Yu

Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, PR China

Available online 27 October 2005

Abstract

 $Ba_5Nb_4O_{15}$ ultrafine powders were prepared by hydrothermal method using $Ba(NO_3)_2$ and Nb_2O_5 precursors. The synthesis characteristics were influenced by the chemical form of precursors, reaction temperature, mole ratio of Ba/Nb and pH value. The chemical form of the precursors has a strong influence on the products of $Ba_5Nb_4O_{15}$. There was no requisite compound in the final product when Nb_2O_5 powder was used as Nb-precursor. In addition, the reaction completeness was also dependent on the synthesis temperature. The best single phase $Ba_5Nb_4O_{15}$ ultrafine powders were obtained at a temperature of 230 °C. The most appreciate Ba/Nb molar ratio was 3/2. The reactions were only carried out in a solution with pH value between 12 and 14. When pH was equal or larger than 14, there was no product of $Ba_5Nb_4O_{15}$ powder in the reactor. © 2005 Elsevier Ltd. All rights reserved.

Keywords: Powders-chemical preparation; X-ray methods; Chemical properties; Niobates; Microwave dielectric materials

1. Introduction

Dielectric materials with dielectric constant greater than 20 and high quality factors ($Q_{\rm f} > 2000 \,{\rm GHz}$) have attracted increasing interests for microwave applications. The hexagonal perovskite oxide $A_5B_4O_{15}$ (A = Ba, Sr; B = Nb, Ta) system have been characterized at microwave frequencies. These systems combine a relatively high permittivity $(39 < \varepsilon_r < 46)$ with a low dielectric loss $(11,583 \text{ GHz} < Q_f < 31,839 \text{ GHz})$ and small temperature coefficient of resonant frequency $(-36 \text{ ppm/}^{\circ}\text{C} < \tau_{f} < 79 \text{ ppm/}^{\circ}\text{C})$ and these were expected as good candidates for microwave dielectric materials.¹ Among $A_5B_4O_{15}$ (A = Ba, Sr; B = Nb, Ta) system, $Ba_5Nb_4O_{15}$ is the most attractive due to the low cost and good dielectric properties. The structure of Ba₅Nb₄O₁₅ has been well studied.^{2–5} It has hexagonal structure and crystallizes in the P3m1 space group with one formula unit per cell (Z=1). The compounds have fivelayer closet packing of oxygen and barium ions. The Nb⁵⁺ions are positioned at the octahedral sites of five AO₃ layers which altogether constitute the unit cell. All the Ba₅Nb₄O₁₅ powders were prepared by the conventional solid-reaction method in the concerned reports.¹⁻⁹ Sreemoolanadhan et al. synthesized Ba₅Nb₄O₁₅ by blending stoichiometric amounts of BaCO₃ and Nb₂O₅ and heating at 1250 °C for 4 h, while Srivastava et al. synthesized Ba₅Nb₄O₁₅ at 1100 °C for 10 h.⁸

E-mail address: xmchen@cmsce.zju.edu.cn (X.M. Chen).

0955-2219/\$ - see front matter © 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.jeurceramsoc.2005.09.044 The present paper reports the hydrothermal synthesis of $Ba_5Nb_4O_{15}$ powder. The major advantage of hydrothermal processing is that there is no need for high-temperature calcination. This, in turn, eliminates the need for milling. Powders are formed directly from solution by taking advantage of the complex reactions taking place in high-temperature water. By controlling these reactions, it is possible to produce anhydrous crystalline powders with controlled particle size, controlled stoichiometry and, in some cases, controlled particle morphology. Chemically synthesized ceramic powders often posses better chemical homogeneity and a finer particle together with better control of particle morphology than those produced by the mixed oxide route, and these features often result in the improved sinterability.⁶

2. Experiment procedures

Analysis-grade barium nitrate and 4N niobium oxide were adopted as the raw materials. Hydrothermal synthesis of $Ba_5Nb_4O_{15}$ powders was carried out in a 200 cm³ stainless autoclave with a Teflon line under autogenous pressure. First, the niobium oxides were dissolved in hot hydrofluoric acid, and the mixture was heated at 80 °C inside a ventilator to remove the residuary HF. Then, the niobium oxide solution was mixed with the barium nitrate which was dissolved in distilled water. After that, sodium hydroxide was vigorously added to the mother solutions until the pH value attained the desired value. Then, the resultant suspension was transferred to the autoclave and heated at 200–250 °C for 5 h, where the filling factor was 80 vol%.

^{*} Corresponding author. Fax: +86 571 8795 2112.

After cooling, the product was filtered and washed with distilled water until the pH was between 7 and 8. Finally, the product was poached ultrasonically with distilled water and dried at $80 \degree$ C in an oven.

The XRD analysis using Cu K α radiation (Rigaku D/MAX2550PC) was conducted to determine the crystal structure. The microstructure and morphology of the product powders were examined using a scanning electron microscope (XL-30-ESEM) with a field gun. An accelerating voltage of 20 kV was used.

3. Results and discussion

Two kinds of differently pretreated Nb₂O₅-precursors are used to synthesis Ba₅Nb₄O₁₅. Fig. 1 shows the products XRD patterns of the two kinds of precursors: (a) the product derived from the Nb₂O₅ powders dissolved in 40% hot HF solution, (b) result of Nb₂O₅ powders in 40% HF solution without dissolution. Only Nb₂O₅ powders dissolve in hot HF solution, can lead to Ba₅Nb₄O₁₅ powders in the product. Otherwise, there are only NaF and BaF₂ in the product.

In precursor (a) the following reactions take place:

$$Nb_2O_5 + (10 + 2n)HF = 2H_n[NbF_{5+n}] + 5H_2O$$
(1)

$$4H_n[NbF_{5+n}] + 5Ba^{2+} + 30OH^{-}$$

= Ba₅Nb₄O₁₅ + 4*n*HF + 20F⁻ (2)

In precursor (b) the reaction is

 $Ba^{2+} + 2F^{-} = BaF_2$ (1)

 $Na^+ + F^- = NaF$

$$2Na^{+} + Nb_{2}O_{5} + 2OH^{-} = 2NaNbO_{3} + H_{2}O$$
 (3)

 BaF_2 is not resolvable in water, so, when mixed, Ba-precursor and (b), Ba^{2+} ions react with dissociative F^- ion passionately in the mixture.

NaNbO₃ has good solubility in water, it is washed away by distilled water, so there is no NaNbO₃ phase in XRD pattern of the resultant product.

Fig. 1. The XRD patterns of (a) Nb_2O_5 powders dissolved in 40% HF solution, (b) Nb_2O_5 powders not dissolved in 40% HF solution.

Fig. 2. XRD spectra of hydrothermal powders synthesized at $250 \,^{\circ}$ C from different molar ratio of Ba(NO₃)₂ and Nb₂O₅: (a) m(Ba)/m(Nb) = 1/1; (b) m(Ba)/m(Nb) = 1.25/1; (c) m(Ba)/m(Nb) = 1.5/1.

Eight grams of Ba(NO₃)₂ and Nb₂O₅ precursors having various Ba:Nb molar ratios were hydrothermally treated at pH 12, 230 °C for 5 h. Fig. 2 shows the XRD spectra of the products. The products are dominated by the Ba/Nb ratio. When Ba/Nb ratio is 1/1, whether there is a product we cannot make a conclusion from the XRD pattern. BaF₂ is synthesized as Ba/Nb ratio is 1.2/1. Only when Ba/Nb ratio is 1.5/1 Ba₅Nb₄O₁₅ can be formed.

Well-crystallized Ba₅Nb₄O₁₅ powders can be synthesized at 230 °C when pH = 12, as shown in Fig. 3. But a small amount of BaF₂ phase is found in the XRD pattern of the product. Because HF is superfluous, when Nb₂O₅ is dissolved in hot 40% HF solution, there are H_n[NbF_{5+n}] and dissociative F⁻ ions in the Nb-precursor. When Ba-precursor and Nb-precursor are mixed together, following reaction takes place:

$$Ba^{2+} + 2F^- \rightarrow BaF_2\downarrow$$

(2)

The XRD patterns of the product with differently pretreated Nb-precursors are showed in Fig. 3. In sample (a), Nb-precursor is volatilized in an aerator for 12 h. Because when Nb₂O₅ dissolves in 40% HF, it stays in HF solution as H_nNbF_{5+n} , after volatilization almost all the dissociative HF has been removed, there is no byproduct of BaF₂ in the resultant product.

Fig. 3. XRD patterns of synthesis powders: (a) HF has been volatilized from the precursor before reaction; (b)HF has not been volatilized from the precursor before reaction.

Fig. 4. XRD patterns of hydrothermal powders synthesized at $230 \,^{\circ}$ C for 5 h from Ba/Nb molar ratio 1.5/1 under the pH value 10, 12 and 14.

Fig. 4 shows the XRD patterns of the product with different pH value at 230 °C for 5 h. $Ba_5Nb_4O_{15}$ phase is obtained when pH 12–13. When pH \geq 14, a new compound is produced. The reaction conversion value for Nb₂O₅ is 99.13% when pH 12 and that is 101.02% when pH = 13, but it is more difficult to make a conclusion for pH = 13–14. So, we selected pH 12 as the reaction condition.

Fig. 5. XRD pattern of hydrothermal powders synthesized at pH 12 for 5 h with Ba/Nb molar ratio 1.5/1 at 200, 230 and 250 $^\circ C.$

Fig. 5 shows the XRD pattern of the products formed at 200, 230 and 250 °C, when pH is 12, Ba/Nb molar ratio is 1.5/1. All the products form at these temperatures are composed only $Ba_5Nb_4O_{15}$ phase, but the reaction conversion values for Nb_2O_5 are different. Table 1 gives the reaction conversion values for Nb_2O_5 . When the synthesis temperature increases from 200 to 230 °C, the reaction conversion values increases obviously, but it changes little when the reaction temperature

Fig. 6. The SEM pictures of $Ba_5Nb_4O_{15}$ powders synthesized at pH 12 for 5 h at the temperature (a) 200 °C, (b) 230 °C and (c) 250 °C.

Table 1 The relationship between the reaction conversion for Nb_2O_5 and the reaction temperature

Reaction temperature $T(^{\circ}C)$	Reaction conversion for Nb ₂ O ₅ (%)
200	88.12
230	99.13
250	99.50

Ba/Nb molar ratio 1.5/1, pH 12, 5 h.

is higher than 230 $^{\circ}$ C. So we select 230 $^{\circ}$ C as the best reaction temperature.

Fig. 6 shows the SEM micrographs of the products synthesized at various temperatures for 5 h. It can be easily seen that the particle size increases obviously when the reaction temperature increases from 200 to $230 \,^{\circ}$ C, whereas it decreases from temperature 230 to $250 \,^{\circ}$ C. The size of plate-like particle is more uniform and its surface is more smooth at $230 \,^{\circ}$ C.

4. Conclusion

Ba₅Nb₄O₁₅ fine powders were prepared by a hydrothermal synthesis using Ba(NO₃)₂ and Nb₂O₅. Nb₂O₅ powders should be dissolved in hot HF when it was used as Nb-precursor. The Ba/Nb molar ratio effected the synthesis product, when Ba/Nb molar ratio was 1.5/1 Ba₅Nb₄O₁₅ powders could be obtained. Superfluous dissociative F⁻ ions in the Nb-precursor produced BaF₂ second phase in the product, so it was volatilized from Nb-precursor. The best reaction condition to synthesize Ba₅Nb₄O₁₅ fine powders was 230 °C, pH 12 for 5 h.

Acknowledgements

The present work was partially supported by Chinese National Key Project for Fundamental Researches under grant No. 2002CB613302, National Science Foundation of China under grant No. 50332030 and National Science Foundation for Distinguished Young Scholars under grant No. 50025205.

References

- Jawahar, I. N., Mohanan, P. and Sebastian, M. T., A₅B₄O₁₅ (A = Ba, Sr, Mg, Ca, Zn; B = Nb, Ta) microwave dielectric ceramics. *Mater. Lett.*, 2003, 57, 4043–4048.
- Shannon, J. and Katz, L., A refinement of the structure of barium tatalum oxide, Ba₅Ta₄O₁₅. Acta Cryst., 1970, B26, 102.
- 3. Galasso, F. and Katz, L., Preparation and structure of $Ba_5Ta_4O_{15}$ and related compounds. *Acta Cryst.*, 1961, **14**, 647–650.
- Roth, R. S. and Waring, J. L., Phase equilibrium relations in the binary system barium oxide–niobium pentoxide. J. Res. Nat. Bur. Stand.-A. Phys. Chem., 1961, 65A, 337–344.
- Vineis, C., Davies, P. K., Negas, T. and Bell, S., Microwave dielectric properties of hexagonal perovskite. *Mater. Res. Bull.*, 1996, 31, 431–437.
- Maclaren, I. and Ponton, C. B., Low temperature hydrothermal synthesis of Ba(Mg_{1/3}Ta_{2/3})O₃ sol-derived powders. J. Mater. Sci., 1998, 33, 17–22.
- Sreemoolanadhan, H. and Sebastian, M. T., High permittivity and low loss ceramic in the BaO-SrO-Nb2O5 system. *Mater. Res. Bull.*, 1995, 30, 653–658.
- Srivastava, A. M., Ackerman, J. F. and Beers, W. W., On the luminescence of Ba₅M₄O₁₅ (M=Ta⁵⁺, Nb⁵⁺). *J. Solid State Chem.*, 1997, **134**, 187– 191.
- Vanderah, T. A., Collins, T. R., Wong-Ng, W., Roth, R. S. and Farber, L., Phase equilibria and crystal chemistry in the BaO-Al₂O₃-Nb₂O₅ and BaO-Nb₂O₅ systems. *J. Alloys Compd.*, 2002, **346**, 116–128.